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Abstract This paper proposes a modification of the

filtered importance sampling method, and improves

the quality of virtual spherical Gaussian light (VSGL)

based real-time glossy indirect illumination using this

modification. The original filtered importance sampling

method produces large overlaps of and gaps between

filtering kernels for high-frequency probability density

functions (PDFs). This is because the size of the

filtering kernel is determined using the PDF at the

sampled center of the kernel. To reduce those overlaps

and gaps, this paper determines the kernel size using

the integral of the PDF within the filtering kernel. Our

key insight is that these integrals are approximately

constant, if kernel centers are sampled using stratified

sampling. Therefore, an appropriate kernel size can be

obtained by solving this integral equation. Using the

proposed kernel size for filtered importance sampling-

based VSGL generation, undesirable artifacts are

significantly reduced with a negligibly small overhead.

Keywords filtered importance sampling, real-time

rendering, global illumination, virtual

point lights.

1 Introduction

The filtered importance sampling method [19]

is a variance reduction technique of Monte Carlo

integration often used for real-time or interactive

rendering, which uses filtering kernels instead of

sample points. This paper proposes a modification

of filtered importance sampling, and improves the

quality of virtual spherical Gaussian light (VSGL)
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(a) Previous filtering kernels (b) Our filtering kernels

Fig. 1 Sampling VPL clusters from a reflective shadow map

based on filtered importance sampling. Red points: kernel

centers sampled according to the PDF (brightness). Orange

squares: filtering kernels (i.e., VPL clusters). The previous

filtered importance sampling (a) produces significant overlaps

of and gaps between filtering kernels. Our method (b) reduces

these overlaps and gaps.

[30] based real-time glossy indirect illumination using

this modification. The original filtered importance

sampling first samples the center of each filtering kernel

according to a probability density function (PDF),

and then determines the size of each filtering kernel

using the PDF at the sampled center. However, this

kernel size determination produces large overlaps of

and gaps between filtering kernels for high-frequency

PDFs (Fig. 1). This is because the kernel size can

be too large when the sampled center is at a local

minimum of a high-frequency PDF. Therefore, this

paper introduces an appropriate kernel size of filtered

importance sampling to reduce these overlaps and gaps.

One effective application of our method is

generation of VSGLs using reflective shadow maps

[8]. Reflective shadow map-based global illumination

is well established for real-time rendering. However,

stochastic sampling of virtual point lights (VPLs) [18]

(i.e., texels of reflective shadow maps which represent

one-bounce light subpaths) produces noticeable

variance especially for glossy interreflections. To
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reduce this variance, VSGLs were introduced recently.

A VSGL approximates a cluster of VPLs using

a Gaussian-based representation. Thanks to this

representation, the distribution of VPLs can be filtered

with a simple summation operation (e.g., mipmaping).

In addition, this representation has an analytical

solution of the rendering integral for each VSGL.

Therefore, if VSGLs are generated from reflective

shadow maps inexpensively, we are able to render

one-bounce glossy indirect illumination at real-time

frame rates.

Tokuyoshi [30] sampled VPL clusters as VSGLs from

a reflective shadow map based on filtered importance

sampling to achieve real-time frame rates. However,

while this approach is simpler and faster than k-means-

based VPL clustering [11, 23], it does induce flickering

structured artifacts due to the previously mentioned

overlaps and gaps. This problem is noticeable when a

bidirectional reflective shadow mapping method [25] is

used to build the PDF. This is because the bidirectional

reflective shadow mapping method produces a dynamic

and high-frequency PDF. Using our kernel size, we are

able to reduce flickering artifacts significantly for such

a high-frequency PDF.

The contributions of our work are as follows:

• An appropriate kernel size of filtered importance

sampling is introduced to reduce undesirable

overlaps of and gaps between filtering kernels.

• For image-based PDFs, the above kernel size is

computed using a simple numerical approach with

negligibly small overhead.

• Using the proposed filtered importance sampling

method, flickering artifacts are reduced for VSGL-

based real-time glossy indirect illumination.

2 Related work

2.1 Sampling with pre-integration

Sampling pre-integrated values is often used for

image-based lighting. Structured importance sampling

[1] stratifies samples hierarchically, and then the

illumination is pre-integrated within each stratum.

Debevec [10] subdivided an environment map into

regions of equal energy using a median cut algorithm.

This method approximates each region with a

directional light source whose color is the sum of

pixel values within the region. Filtered importance

sampling [19] is introduced for glossy materials under

environment maps. This technique samples pre-filtered

values using a mipmap, thus it performs at real-time

frame rates. This paper modifies the kernel size of

filtered importance sampling to improve the sampling

quality.

2.2 Real-time global illumination

In this paper, we apply the proposed filtered

importance sampling technique to real-time global

illumination. Interactive global illumination algorithms

were surveyed by Ritschel et al. [24]. For a

comprehensive survey of VPL-based rendering, we refer

the readers to Dachsbacher et al. [7]. Here we pay

attention only to the most relevant works.

Virtual point lights (VPLs) are often used for

representing indirect illumination [18]. For real-

time rendering, single-bounce VPLs lit from point or

directional lights can be generated by using reflective

shadow maps [8]. Hundreds or thousands of VPLs

are often resampled from a reflective shadow map

by hierarchical sample warping [5] according to a

mipmapped image-based PDF [9]. To generate shadow

maps for so many lights, Ritschel et al. [26]

proposed imperfect shadow maps. In their follow-up

paper [25], a bidirectional reflective shadow mapping

method was introduced to estimate a view-dependent

importance for the image-based PDF. This method

roughly computes the contribution of light paths from

the eye to each reflective shadow map texel, and

thus generates dynamic and high-frequency PDFs.

Therefore, it can increase flickering artifacts, even

though the total variance can be reduced. To take

such dynamic PDFs into account, Barák et al. [2]

introduced a temporally coherent sampling technique

based on the Metropolis-Hastings algorithm for static

light sources. They also proposed tessellation-based

imperfect shadow maps to reduce memory usage. While

the original VPL method is theoretically unbiased,

variance is visible as spiky artifacts especially for glossy

materials [20]. To avoid this problem, VPLs are often

clustered and then represented using a smaller number

of area lights for interactive rendering.

Area light approximation via VPL clustering.

Dong et al. [11] clustered VPLs using the k-

means algorithm, and then approximated visibilities

of VPLs using a soft shadow map for each cluster.

Prutkin et al. [23] clustered texels of a reflective

shadow map based on k-means similar to Dong et

al., while they approximated the clusters with area

lights for analytical radiance evaluation. They sampled

cluster centers using the bidirectional reflective shadow

mapping method to improve the quality. Luksch et
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al. [21] clustered VPLs using a kd-tree to generate

virtual polygon lights to update light maps. These

virtual area lights were evaluated using analytical

form factors which cannot reduce variance caused

by high-frequency bidirectional reflectance distribution

functions (BRDFs). To allow for all-frequency BRDFs,

recently spherical Gaussians have been used.

Spherical Gaussians [32, 38] are often used for

approximating the rendering of various types of

materials under environment maps or area lights [14,

15, 34, 37, 39]. This is because they have closed-

form solutions for the integral, product, and product

integral, which are fundamental operations to evaluate

rendering integrals. Hence, all-frequency materials can

be rendered efficiently. To represent static environment

maps using spherical Gaussians, they have been fitted

in preprocessing. For dynamic indirect illumination

performed at near-interactive frame rates, Xu et

al. [36] approximated the outgoing radiance using

spherical Gaussians for each triangle primitive lit from

distant light sources. Virtual spherical Gaussian lights

(VSGLs) [30] were introduced to approximate a set

of VPLs. To generate thousands of VSGLs at real-

time frame rates, a filtered importance sampling-based

approach was used with mipmapped reflective shadow

maps. To generate a few VSGLs for more time-sensitive

applications such as video games, the total value of

all the reflective shadow map texels were computed

instead of filtered importance sampling [29]. These

methods can render caustics, unlike eye-path tracing-

based methods (e.g., cone tracing [6, 35]).

However, filtered importance sampling-based VSGL

generation induces a flickering error for high-frequency

PDFs due to inappropriate kernel sizes. In this paper,

we introduce an appropriate kernel size of filtered

importance sampling.

3 Modified filtered importance

sampling

3.1 Filtered importance sampling

Filtered importance sampling can be used when the

integrand has a 2D image f(x), where x ∈ [0, 1]2 is

the image-space position. This method first samples

each kernel center xi ∈ [0, 1]2 according to a PDF p(x),

and then a filtered value of f(x) is used as each sample

value instead of f(xi). This filtered value is given by a

pre-filtered mipmap as follows:∫
[0,1]2

f(x)
g((x− xi)/si)

ai
dx ≈ f̄(xi, li),

CDF

x

1
N

1
N

1
N

1
N
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Fig. 2 CDF (blue line) and stratified sampled kernels.

where g((x−xi)/si) is the unnormalized filtering kernel

which has a fixed maximum, si is the kernel size, ai
is the filtering area (i.e., normalization factor) given

by ai =
∫

[0,1]2
g((x − xi)/si)dx, and f̄(xi, li) is the

mipmapped value of f(x) at mip level li. Let M be

the number of texels of f(x), then the filtering area ai
is also written as a function of mip level li: ai = 4li

M .

Křivánek and Colbert [19] determined mip level li by

representing this filtering area using the inverse of the

density at sampled center xi as

ai =
4li

M
= min

(
K

Np(xi)
, 1

)
, (1)

where N is the number of samples, and K is a user-

specified parameter to tweak the kernel size (Křivánek

and Colbert used K = 4). However, this mip level

determination is sensitive to the sampled center xi.

When xi is at a local minimum of a high-frequency

PDF, the filtering kernel can be too large. Conversely,

the filtering kernel can also be too small when xi is at a

local maximum. Therefore, undesirable overlaps of and

gaps between filtering kernels can be produced.

3.2 Our filtering kernels

This paper introduces an appropriate kernel size to

reduce overlaps of and gaps between filtering kernels

for filtered importance sampling. Sampling according

to a PDF is done by computing the inverse cumulative

distribution function (CDF) of the PDF. As shown

in Fig. 2, a sampling interval of the vertical axis is

the integral of the PDF within each filtering kernel.

Therefore, if kernel centers are sampled using stratified

sampling, this integral is almost 1
N . Hence, an

appropriate kernel size si is obtained by solving the

following integral equation:∫
[0,1]2

p(x)g((x− xi)/si)dx =
1

N
. (2)

Since the left side is monotonically increasing with

respect to the kernel size, we can obtain the kernel size

using a bisection method. When PDF p(x) is given by

a 2D image, we can use the mipmap of this PDF, which

3
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is also used for sampling xi via hierarchical sample

warping [5]. Using this mipmap, Eq. (2) is rewritten

as

4li

M
p̄(xi, li) =

1

N
, (3)

where p̄(xi, li) ≈
∫

[0,1]2
p(x) g((x−xi)/si)

ai
dx is the

mipmapped value of p(x). In this paper, li is calculated

using the bisection method with an iteration count of

12.

4 Application to virtual spherical

Gaussian lights (VSGLs)

In this paper, we demonstrate generation of

VSGLs as an effective application of our filtered

sampling. A VSGL represents the positional

distribution and total radiant intensity of VPLs using

a Gaussian and spherical Gaussians, respectively.

Since spherical Gaussians have closed-form solutions to

evaluate rendering integrals, all-frequency illumination

is computed analytically for each VSGL. The VSGL

algorithm is composed of the following five phases:

reflective shadow map rendering, PDF building, VSGL

generation, shadow map rendering, and shading. This

paper improves only on the VSGL generation phase.

For the detail of VSGLs, please refer to Appendix A,

B, and C.

4.1 Mipmap-based VSGL generation

To generate VSGLs, VPLs are first clustered. Then

VPL powers are summed and VPL distributions are

averaged for each cluster (Fig. 3). To represent

VPL distributions with a Gaussian and spherical

Gaussians, weighted averages of emission directions,

VPL positions, and squared VPL positions weighted by

each VPL power are required (for the detail, please refer

to Appendix B). Therefore, a reflective shadow map to

store the above VPL power and weighted distribution

parameters is generated, and then they are mipmapped

to approximately obtain total texel values (Fig. 4).

Let f(x) be the reflective shadow map, then the total

texel value within the ith VPL cluster centered at xi is

approximated using the mipmap f̄(xi, li) as follows:∫
[0,1]2

f(x)g((x− xi)/si)dx ≈ 4li

M
f̄(xi, li),

where filtering kernel g((x − xi)/si) represents the

VPL cluster. To sample the kernel center xi and

mip level li, a filtered importance sampling-based

approach can be used. The kernel center xi is

sampled according to a dynamic and high-frequency

view-dependent PDF p(x) given by the bidirectional

Fig. 3 Clustered VPLs. Each cluster is approximated with a

VSGL by computing the total VPL power and averaged VPL

distributions within the cluster. These operations are done by

filtered sampling on the reflective shadow map.

(a) diff weight (b) spec weight (c) diff dir (d) spec dir (e) position (f) ‖position‖2

Fig. 4 Mipmapped reflective shadow map for VSGL generation.

Average emission directions (c)(d) and positions (e)(f) are

weighted by VPL powers (a)(b). VSGLs are sampled from this

reflective shadow map based on filtered importance sampling.

reflective shadow mapping method. Tokuyoshi [30]

determined li using Eq. (1) with K = 1 according to

the previous filtered importance sampling. Using this

mip level determination, the total value of reflective

shadow map texels within each cluster is given by∫
[0,1]2

f(x)g((x− xi)/si)dx ≈ f̄(xi, li)

max (Np(xi), 1)
. (4)

However, since the numerator is filtered while the

denominator is not, this sampling method can induce

an intensive error due to overlaps of and gaps between

filtering kernels.

4.2 VSGL generation using our filtering

kernels

To obtain an appropriate mip level li, this paper

employs Eq. (3) instead of Eq. (1) for filtered

importance sampling-based VSGL generation. Using

this mip level li, the total texel value within each cluster

is approximated as follows:∫
[0,1]2

f(x)g((x− xi)/si)dx ≈ f̄(xi, li)

Np̄(xi, li)
. (5)

Unlike Eq. (4), both the numerator and denominator

are filtered using the same kernel. Hence, temporal

coherence is improved for a dynamic high-frequency

PDF. Furthermore, the approximation error can be

reduced if PDF p(x) is approximately proportional to

f(x), similar to standard importance sampling.
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PDF (light view)PDF (light view) KernelsKernels PDF (light view)PDF (light view) KernelsKernels PDF (light view)PDF (light view) ClustersClusters PDF (light view)PDF (light view) ClustersClusters

Rendering time: 15.4 msRendering time: 15.4 ms Rendering time: 15.4 msRendering time: 15.4 ms Rendering time: 31.3 msRendering time: 31.3 ms Rendering time: 34.9 msRendering time: 34.9 ms

PDF (light view)PDF (light view) KernelsKernels PDF (light view)PDF (light view) KernelsKernels PDF (light view)PDF (light view) ClustersClusters PDF (light view)PDF (light view) ClustersClusters

Rendering time: 18.8 msRendering time: 18.8 ms Rendering time: 18.8 msRendering time: 18.8 ms Rendering time: 32.5 msRendering time: 32.5 ms Rendering time: 34.4 msRendering time: 34.4 ms

(a) Tokuyoshi 2015 [30] (b) Ours (c) k-means (2D image space) (d) k-means (3D world space)

Fig. 5 Rendered images using different VSGL generation methods for 331k triangles scene (upper row) and 75k triangles scene

(lower row). When a sampled kernel center is at a local minimum of the PDF, the previous method (a) produces too bright of a

VSGL with low probability. On the other hand, our method (b) does not produce such an error similar to k-means-based approaches

(c)(d). Aliasing artifacts on the glossy table in the upper row are the shadow acne of imperfect shadow maps.

Controlling the kernel size. For Eq. (5), the mip

level li affects only the filter bandwidth. Therefore,

the user-specified parameter K can also be used for

calculating li in our case. This is implemented using K
N

instead of 1
N in Eq. (3). Using K > 1, the temporal

coherence is improved, though an overblurring error

is induced. This overblurring error is reduced by

increasing the number of samples N , similar to the

original filtered importance sampling.

5 Experimental results

Here we present rendering results using 1024 VSGLs

generated using our filtered importance sampling with

K = 1 on an NVIDIA R© GeForce R© GTX
TM

970 GPU.

The frame buffer and reflective shadow map (RSM)

resolutions are 1920×1088 and 5122, respectively.

A tessellation-based imperfect shadow map [2] of

resolution 642 is employed to evaluate the visibility of

each VSGL. To estimate a view-dependent PDF on the

reflective shadow map using the bidirectional reflective

shadow mapping method, 2048 VSGLs without shadow

maps are generated on the G-buffer. For the PDF on

the G-buffer, reflectance is used. To perform stratified

sampling, the Fibonacci lattice point set using a golden

ratio approximation [27] is employed as a quasi-random

number. For comparison, this paper uses k-means

clustering using 2D image space and 3D world space.

In these k-means-based approaches, once clusters are

assigned to all the texels, those texels are sorted

by cluster ID. Then, to compute the total value of

clustered texels, a thread is dispatched for each cluster

similar to Prutkin et al. [23]. For implementation

details, please refer to Appendix D.

Quality. Fig. 5 shows rendered images using different

VSGL generation methods. Using the previous kernel

size (a), intense artifacts can be produced with low

probability, though this sampling method is faster than

the k-means-based approaches (c)(d). This is because

too large of a filtering kernel is produced when the

sampled kernel center is at a local minimum of the PDF.

On the other hand, our kernel size (b) does not produce

these undesirable filtering kernels nor does it noticeably

sacrifice performance.

Performance. Tab. 1 shows the computation times

of VSGL generation both for bidirectional reflective

shadow mapping (BRSM) (upper row) and final

5
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Tab. 1 Computation times of VSGL generation (ms).

Tokuyoshi 2015 [30] Ours k-means (2D image space) k-means (3D world space)

PDF for BRSMPDF for BRSM
(camera view)(camera view)

KernelsKernels PDF for BRSMPDF for BRSM
(camera view)(camera view)

KernelsKernels PDF for BRSMPDF for BRSM
(camera view)(camera view)

ClustersClusters PDF for BRSMPDF for BRSM
(camera view)(camera view)

ClustersClusters

Additional G-buffer: 0.816 Additional G-buffer: 0.816 Cluster assignment: 3.004 Cluster assignment: 5.009

Mipmapping: 0.968 Mipmapping: 0.968 Sort: 1.541 Sort: 1.517

Filtered sampling: 0.090 Filtered sampling: 0.092 Sum: 9.096 Sum: 9.856

PDF (light view)PDF (light view) KernelsKernels PDF (light view)PDF (light view) KernelsKernels PDF (light view)PDF (light view) ClustersClusters PDF (light view)PDF (light view) ClustersClusters

Additional RSM: 0.165 Additional RSM: 0.165 Cluster assignment: 0.619 Cluster assignment: 0.860

Mipmapping: 0.201 Mipmapping: 0.201 Sort: 0.306 Sort: 0.299

Filtered sampling: 0.084 Filtered sampling: 0.088 Sum: 1.995 Sum: 4.231

Total: 2.324 Total: 2.330 Total: 16.561 Total: 21.772

Tab. 2 Computation times of VSGL generation (ms).

Tokuyoshi 2015 [30] Ours k-means (2D image space) k-means (3D world space)

PDF for BRSMPDF for BRSM
(camera view)(camera view)

KernelsKernels PDF for BRSMPDF for BRSM
(camera view)(camera view)

KernelsKernels PDF for BRSMPDF for BRSM
(camera view)(camera view)

ClustersClusters PDF for BRSMPDF for BRSM
(camera view)(camera view)

ClustersClusters

Additional G-buffer: 0.752 Additional G-buffer: 0.752 Cluster assignment: 3.262 Cluster assignment: 5.756

Mipmapping: 0.985 Mipmapping: 0.985 Sort: 1.523 Sort: 1.499

Filtered sampling: 0.087 Filtered sampling: 0.089 Sum: 8.850 Sum: 8.735

PDF (light view)PDF (light view) KernelsKernels PDF (light view)PDF (light view) KernelsKernels PDF (light view)PDF (light view) ClustersClusters PDF (light view)PDF (light view) ClustersClusters

Additional RSM: 0.154 Additional RSM: 0.154 Cluster assignment: 1.172 Cluster assignment: 0.899

Mipmapping: 0.199 Mipmapping: 0.199 Sort: 0.306 Sort: 0.305

Filtered sampling: 0.065 Filtered sampling: 0.067 Sum: 5.275 Sum: 20.489

Total: 2.242 Total: 2.246 Total: 20.388 Total: 37.683

Tab. 3 Code size of VSGL generation (C++ and HLSL)

Tokuyoshi 2015 [30] Ours k-means (2D) k-means (3D)

Number of shaders 2 2 9 9

Number of dispatch calls 2 2 39 39

Lines of code 222 232 1143 1172

shading (lower row). Our contribution is written in

red. Although our method is a numerical approach,

its overhead is a total of about five microseconds

more compared to the previous filtered importance

sampling-based generation. In addition, our method

is about 7-9 times faster than the k-means-based

approaches. The difference is significant especially for

the bidirectional reflective shadow mapping method,

which uses a higher-resolution G-buffer (1920×1088)

than the reflective shadow map (5122). Tab. 2 shows

the computation times using different PDFs. For these

PDFs, the performance of k-means-based approaches

is more expensive than Tab. 1. This is because the

last pass “Sum” (which is the summation of texel

6
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K=1K=1

Rendering time: 19.3 msRendering time: 19.3 ms CloseupCloseup

K=2K=2

Rendering time: 19.4 msRendering time: 19.4 ms CloseupCloseup

K=4K=4

Rendering time: 19.5 msRendering time: 19.5 ms CloseupCloseup

Fig. 6 Unlike k-means-based approaches, our approach can control the kernel size using the user-specified parameter K. By

increasing K, the temporal coherence is improved, while some illumination appearance is overblurred (262k triangles scene).

PDF (light view)PDF (light view) KernelsKernels PDF (light view)PDF (light view) KernelsKernels PDF (light view)PDF (light view) ClustersClusters PDF (light view)PDF (light view) ClustersClusters

Rendering time: 20.2 msRendering time: 20.2 ms Rendering time: 20.2 msRendering time: 20.2 ms Rendering time: 32.2 msRendering time: 32.2 ms Rendering time: 35.2 msRendering time: 35.2 ms

(a) Tokuyoshi 2015 [30] (b) Ours (c) k-means (2D image space) (d) k-means (3D world space)

Fig. 7 Light occluded by columns (262k triangles scene). Since filtered importance sampling-based approaches (a)(b) ignore the

difference of world space positions similar to the k-means-based approach using image space (c), they blur some indirect illumination

for this scene. These low-frequency errors are visually acceptable compared to high-frequency artifacts.

values based on Prutkin et al.’s implementation) has a

linear complexity with respect to the number of texels

within a cluster. Comparatively, the performance of our

approach is almost independent of the PDFs, because

it uses pre-filtered mipmaps. Hence, the proposed

method is suitable for applications which require stable

performance.

Code size. Tab. 3 shows the code size of VSGL

generation in our implementation. Filtered importance

sampling-based approaches use only two compute

shaders. One is for the calculation of the additional

reflective shadow map (or G-buffer), and the other is

for the filtered sampling of VSGLs. The difference

of our method from the previous method [30] is only

the mip level determination (10 lines of code). On

the other hand, the k-means-based approaches require

more compute shaders than ours. In addition, some of

them are dispatched iteratively for the GPU sort. Our

method is about five times fewer lines of code than the

k-means-based approaches.

Kernel size controlling. As shown in Fig. 6, the

kernel size of our method is controllable by using

the user-specified parameter K unlike k-means-based

approaches. Although some illumination appearance is

overblurred by using K > 1, the temporal coherence

is improved. The parameter K can be used to balance

illumination details and temporal coherence according

to the liking of a user.

6 Limitations

Feature space. As shown in Fig. 7, filtered

importance sampling-based approaches (a)(b) ignore

the difference of world space positions similar to the k-

means-based-approach using image space (c). If VPLs

are clustered ignoring such high-dimensional features,

some indirect illumination is blurred when using

VSGLs. These low-frequency errors are a limitation of

filtered importance sampling-based VSGL generation

to achieve real-time frame rates, but they are more

visually acceptable than high-frequency artifacts (e.g.,

flickering and spiky artifacts).

Overlaps and gaps. Although our method reduces

overlaps of and gaps between filtering kernels, they

cannot be removed completely for inhomogeneous

sample distributions. This problem is alleviated by

using stratified sampling.

PDF. Since our method requires a given PDF, it

cannot be applied to sampling strategies without the

PDF (e.g., sequential Monte Carlo instant radiosity

[13]).
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Hierarchical sample warpingHierarchical sample warping

Rendering time: 11.1 msRendering time: 11.1 ms

PDF and kernels
(light view)

Metropolis-HastingsMetropolis-Hastings

Rendering time: 11.2 msRendering time: 11.2 ms

PDF and kernels
(light view)

Fig. 8 Caustics rendered using our method with the same PDF

(514 triangles scene). Kernel centers of the upper row and lower

row are generated using hierarchical sample warping [5] and

the Metropolis-Hastings-based temporally coherent sampling [2],

respectively. Due to a lack of stratification, Metropolis-Hastings

produces noticeable artifacts.

Temporal coherence. Since our method improves

only the kernel size, kernel centers can still be

temporally incoherent for dynamic PDFs. Although

the Metropolis-Hastings algorithm can be used for

temporally coherent sampling [2], it is limited to

static light sources and has a lack of stratification.

This problem induces noticeable artifacts especially

for caustics (Fig. 8). Therefore, this paper employs

hierarchical sample warping for stratified sampling. If

the temporal coherence is more important than detailed

illumination, K > 1 can be used for our method to

improve the temporal coherence.

7 Conclusions

This paper improved the kernel size of filtered

importance sampling to reduce overlaps of and gaps

between filtering kernels. Using this modification

for VSGL generation, we are able to render glossy

indirect illumination with fewer artifacts than the

previous VSGL generation. The overhead of our

method is about five microseconds for thousands of

VSGLs on a commodity GPU. Although the filtered

importance sampling-based approach cannot take into

account the difference of higher-dimensional features

(e.g., world position) unlike k-means-based approaches,

it is simple, fast, and has stable performance. This

paper has demonstrated VSGL-based dynamic glossy

indirect illumination, but our method is also usable

for spherical Gaussian light generation for dynamic

environment maps. Since environment maps are 2D

light distribution, it might be more suitable than VSGL

generation. We would like to investigate its efficiency

in the future.

A Spherical Gaussians

A spherical Gaussian is a type of spherical function

and is represented using a Gaussian function γ with

respect to a direction vector ω ∈ S2 as follows:

G(ω, ξ, λ) = γ

(
‖ω − ξ‖, 1

λ

)
= e−

λ
2 ‖ω−ξ‖

2

= eλ((ω·ξ)−1),

where ξ ∈ S2 is the lobe axis, and λ is the lobe

sharpness. ξ and 1
λ correspond to the mean and

variance for the Gaussian function, respectively. The

integral of a spherical Gaussian is given by

A(λ) =

∫
S2

G(ω, ξ, λ)dω =
2π

λ

(
1− e−2λ

)
.

A normalized spherical Gaussian G(ω,ξ,λ)
A(λ) is known as

the Von Mises-Fisher distribution. For VSGLs, this

distribution is used for representing reflection lobes.

A.1 Spherical Gaussian approximation of

reflection lobes

Diffuse lobes. For the Lambert BRDF ρd, the diffuse

reflection lobe can be approximated with a spherical

Gaussian taking energy conservation into account as

follows:

ρd(y,ω
′,ω)〈ω,n〉 ≈ Rd

G(ω,n, λd)

A(λd)
, (6)

where ρd(y,ω
′,ω) = Rd

π , Rd is the diffuse reflectance,

ω′ ∈ S2 is the incoming direction, n ∈ S2 is the surface

normal at the world position y ∈ R3, 〈ω,n〉 = max(ω ·
n, 0) is the clamped dot product, and λd ≈ 2 is the

sharpness of the diffuse lobe which is obtained by using

the least square method.

Specular lobes. For the microfacet BRDF ρs, the

specular reflection lobe is fitted with a single spherical

Gaussian by using Wang et al. [34]’s analytical

approximation. The BRDF is separated into two

factors: the unnormalized normal distribution function

D(ωh) whose maximum is one, and the rest of the

factors C(ω) as follows:

ρs(y,ω
′,ω)〈ω,n〉 = C(ω)D(ωh),

where ωh = ω+ω′

‖ω+ω′‖ is the halfway vector of the

incoming direction and outgoing direction. Bell-

shaped normal distribution functions (e.g., Phong [4],

Beckmann [3] and GGX [31, 33] distributions) can be

approximated with a spherical Gaussian as

D(ωh) ≈ G(ωh,n, λh).

8
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For Beckmann or GGX normal distribution functions,

λh = 2
α2 where α is the roughness parameter. Using

spherical warping, this can be approximated with a

function of ω as

G(ωh,n, λh) ≈ G(ω, ξs, λs),

where ξs is the reflection vector given by ξs = 2(ω′ ·
n)n− ω′, and λs = λh

4|ξs·n|
. Hence, the specular lobe is

approximated with the following equation:

ρs(y,ω
′,ω)〈ω,n〉 ≈ C(ω)G(ω, ξs, λs).

Moreover, since microfacet BRDFs mostly preserve

energy for highly glossy surfaces, the specular lobe can

be approximated using a normalized spherical Gaussian

as follows:

ρs(y,ω
′,ω)〈ω,n〉 ≈ Rs

G(ω, ξs, λs)

A(λs)
, (7)

where Rs is the specular reflectance. Anisotropic

spherical Gaussians [38] are also usable in the same

manner.

B Virtual spherical Gaussian lights

(VSGLs)

This paper approximates a cluster of VPLs with a

VSGL. For a VSGL, the total radiant intensity and

positional distribution of VPLs are represented using a

spherical Gaussian and isotropic Gaussian distribution

respectively. This representation can be computed

using a simple summation operation.

B.1 Radiant intensity

The radiant intensity of the jth VPL is given as

Ij(ω) = Φjρ(yj ,ω
′
j ,ω)〈ω,nj〉,

where Φj is the power of the jth photon emitted from

the light source, ω′j ∈ S2 is the incoming direction of

the photon, and nj ∈ S2 is the surface normal at the

VPL position yj ∈ R3, and ρ(yj ,ω
′
j ,ω) is the BRDF.

This paper first divides this BRDF into diffuse and

specular components (i.e., ρd and ρs). Then, the total

radiant intensity of clustered VPLs is approximated

with a single spherical Gaussian for each component by

using Toksvig [28]’s filtering. For ease of explanation,

this subsection hereafter describes only a single BRDF

component. The total radiant intensity of a VPL

cluster S is represented as

Iv(ω) =
∑
j∈S

Ij(ω) ≈ cvG (ω, ξv, λv) .

To compute spherical Gaussian parameters cv, ξv and

λv efficiently, each reflection lobe is approximated using

Eq. (6) or Eq. (7) as follows:

Iv(ω) =
∑
j∈S

Φjρ(yj ,ω
′
j ,ω)〈ω,nj〉

≈
∑
j∈S

ΦjRj
G
(
ω, ξj , λj

)
A(λj)

=

∑
j∈S

ΦjRj

∑j∈S ΦjRj
G(ω,ξj ,λj)
A(λj)∑

j∈S ΦjRj
,

where Rj is the reflectance, and ξj and λj are the

axis and sharpness of the reflection lobe at the jth

VPL. Then, the weighted average of the normalized

spherical Gaussians weighted by the VPL power ΦjRj
is approximated with a single spherical Gaussian as∑

j∈S ΦjRj
G(ω,ξj ,λj)
A(λj)∑

j∈S ΦjRj
≈ G (ω, ξv, λv)

A(λv)
.

Using Toksvig’s filtering, the jth normalized spherical

Gaussian is first approximately converted into its

averaged direction as ξ̄j =
λj
λj+1ξj . Next, the weighted

average of the directions is computed by

ξ̄v =

∑
j∈S ΦjRj ξ̄j∑
j∈S ΦjRj

.

Finally, the filtered spherical Gaussian is obtained from

the weighted average direction as ξv = ξ̄v
‖ξ̄v‖

, λv =

‖ξ̄v‖
1−‖ξ̄v‖

. The coefficient cv is given by cv =
∑
j∈S ΦjRj

A(λv) .

B.2 Positional distribution

In this paper, the positional distribution of VPLs

is represented with a single isotropic Gaussian

distribution for a VSGL. Unlike radiant intensity, this

distribution is not divided into diffuse and specular

components in order to avoid the increase of visibility

tests (i.e., shadow maps). The weighted mean of VPL

positions is computed by

µv =

∑
j∈S Φj(Rd,j +Rs,j)yj∑
j∈S Φj(Rd,j +Rs,j)

,

where Rd,j and Rs,j are the diffuse reflectance and

specular reflectance at the jth VPL, respectively. The

positional variance is also calculated using weighted

average as

σ2
v =

∑
j∈S Φj(Rd,j +Rs,j)‖yj‖2∑

j∈S Φj(Rd,j +Rs,j)
− ‖µv‖

2
.

Assuming VPLs are distributed on a planar surface, the

emitted radiance of a VSGL is represented as follows:

Le(y,ω) ≈ Iv(ω)

2πσ2
v |ω · n|

γ
(
‖y − µv‖, σ2

v

)
, (8)

where n is the surface normal which will be eliminated

in shading (§C.1).

9
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B.3 VSGL generation using reflective

shadow maps

As mentioned in §B.1 and B.2, a VSGL is generated

by calculating the total VPL power
∑
j∈S ΦjRj ,

total weighted emission direction
∑
j∈S ΦjRj ξ̄j , total

weighted position
∑
j∈S Φj(Rd,j + Rs,j)yj , and total

weighted squared norm of the position
∑
j∈S Φj(Rd,j +

Rs,j)‖yj‖2. Therefore, these values are stored into

reflective shadow maps, and then they are mipmapped

to obtain the total values. The ith VPL cluster

is represented by the unnormalized filtering kernel

g ((x− xi)/si) on the reflective shadow map. For

example, let f(x) be VPL power stored in the reflective

shadow map, then the total VPL power of the ith VPL

cluster is given by∑
j∈S

ΦjRj =

∫
[0,1]2

f(x)g ((x− xi)/si) dx ≈ 4li

M
f̄(xi, li).

We are also able to calculate the total weighted emission

direction, total weighted position, and total weighted

squared norm of the position in the same manner. In

this paper, the image-space position xi and mip level li
are sampled based on filtered importance sampling.

C Shading

For each shading point yp with view direction ωp,

the reflected radiance is calculated using the rendering

equation [16] defined by

L(yp,ωp) =

∫
S2

Lin(yp,ω)ρ(yp,ωp,ω)〈ω,np〉dω, (9)

where Lin(yp,ω) is the incoming radiance, and np is

the surface normal at the shading point. This paper

approximates the incoming radiance using spherical

Gaussians for the analytical approximation of the

rendering integral [34, 38].

C.1 Incoming radiance

Using Eq. (8), the approximated incoming radiance

is given by

Lin(yp,ω) = V (yp,y)Le(y,−ω)

≈ V (yp,µv)Iv(−ω)

2πσ2
v |ω · n|

γ
(
‖y − µv‖, σ2

v

)
,

(10)

where ω =
y−yp
‖y−yp‖ , V (yp,µv) is the visibility between

yp and µv obtained from a shadow map. The position

y is assumed to be on the planar surface defined

by the normal n and position µv. However, n and

y are unknown for shading. Therefore, we project

the positional distribution onto a sphere centered at

a shading point instead. To correct the energy for

this projection, |ω · n| is multiplied similar to virtual

spherical lights [12]. Since it is divided by |ω · n|, n

is eliminated. This is reasonable because the actual

surface normal distribution is taken into account by

the radiant intensity Iv(−ω). Therefore, Eq. (10) is

approximated with the following equation:

Lin(yp,ω) ≈ Iv(−ω)

2πσ2
v

γ
(
‖yr − µv‖, σ2

v

)
,

where ω =
yr−yp
‖yr−yp‖ , and yr is the position on the sphere

defined by the center yp and radius ‖µr − yp‖. This

is derived assuming a small σv or large radius, but it

does not produce noticeable artifacts in practice for a

large σv and small radius. The Gaussian term can be

rewritten into a spherical Gaussian as

γ
(
‖yr − µv‖, σ2

v

)
= G(ω, ξµ, λσ), (11)

where ξµ =
µv−yp
‖µv−yp‖

, and λσ =
‖µv−yp‖

2

σ2
v

. This

spherical Gaussian represents the spherical region of

the VSGL viewed from yp. Using Eq. (11), the

incoming radiance is approximated with the product

of two spherical Gaussians which yields a spherical

Gaussian as follows:

Lin(yp,ω) ≈ cv
2πσ2

v

G (ω,−ξv, λv)G(ω, ξµ, λσ)

= cinG (ω, ξin, λin) , (12)

where ξin =
λσξµ−λvξv
‖λσξµ−λvξv‖

, λin = ‖λσξµ − λvξv‖, and

cin = cv
2πσ2

v
eλin−λv−λσ .

C.2 Shading via product integrals of

spherical Gaussians

Since the reflection lobe ρ(yp,ωp,ω)〈ω,np〉 can

be approximated using spherical Gaussians and

anisotropic spherical Gaussians, Eq. (9) can be

calculated using the analytical product integral.

Diffuse reflection. Using Eq. (6) and Eq. (12), the

rendering integral of the diffuse component is calculated

using the analytical product integral of two spherical

Gaussians. This approach is efficient for a few VSGLs

[29]. However, a light leak error caused by the spherical

Gaussian approximation of reflection lobes cannot be

reduced by increasing the number of VSGLs. Unlike the

secondary bounce represented by VSGLs, light leaks are

noticeable at the first bounce which is more visually

important. Therefore, for thousands of VSGLs, the

cosine factor at the first bounce is assumed to be a

constant and pulled out of the integral [34] as follows:

Ld(xp,ωp) =

∫
S2

Lin(xp,ω)ρd(xp,ωp,ω)〈ω,np〉dω

≈ cinRd
π

A(λin)〈ξin,np〉.

10
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In addition, when λin is not small, A(λin) ≈ 2π
λin

can be assumed [14]. Therefore, diffuse reflection is

inexpensively calculated using the following equation:

Ld(xp,ωp) ≈
2cinRd
λin

〈ξin,np〉 .

Specular reflection. While spherical Gaussians are

used for VSGLs, this paper employs an anisotropic

spherical Gaussian to approximate a specular lobe at

a shading point. This is because a specular lobe can

be anisotropic even if it is an isotropic BRDF model,

especially for shallow grazing angles. For simplicity,

anisotropic spherical Gaussians are used only for the

first bounce which is more visually important than the

second bounce. In addition, the product integral of a

spherical Gaussian and anisotropic spherical Gaussian

[38] has a reasonable computation cost. An anisotropic

spherical Gaussian is defined as

Ǵ(ω, ξx, ξy, ξz, ηx, ηy) = 〈ω, ξz〉e−ηx(ω·ξx)2−ηy(ω·ξy)2 ,

where ξx, ξy, ξz are orthonormal vectors, and ηx, ηy are
the bandwidth parameters. Since a specular lobe is
approximated with an anisotropic spherical Gaussian
as ρs(yp,ωp,ω)〈ω,np〉 ≈ C(ω)Ǵ(ω, ξx, ξy, ξz, ηx, ηy),
the rendering integral is calculated as

Ls(yp,ωp) =

∫
S2

Lin(yp,ω)ρs(yp,ωp,ω)〈ω,np〉dω

≈ cinC(ξin)

∫
S2

G(ω, ξin, λin)Ǵ
(
ω, ξx, ξy, ξz, ηx, ηy

)
dω

≈
πcinC(ξin)Ǵ

(
ξin, ξx, ξy, ξz,

ηxν

ηx+ν
,
ηyν

ηy+ν

)
√

(ηx + ν)(ηy + ν)
,

where ν = λin
2 .

D Implementation details of VSGL

generation

VSGL generation using filtered importance

sampling. Our implementation is based on Tokuyoshi

[30], and uses DirectX R© 11. After rendering a reflective

shadow map, an additional reflective shadow map

(which stores VPL positions, squared VPL positions,

and average emission directions to calculate VSGL

parameters) is generated using a compute shader.

Then, these reflective shadow maps are mipmapped

using a graphics API (i.e., GenerateMips of DirectX).

Finally, VSGLs are generated based on filtered

importance sampling. The proposed mip level li is

calculated using Alg. 1.

VSGL generation using k-means. For comparison,

this paper uses k-means VPL clustering using 2D image

space and 3D world space. The k-means algorithm

first samples the cluster center according to the PDF,

Algorithm 1 Mip level calculation using the bisection

method.

lmin ← 0

lmax ← the top mip level of p̄

for k = 1 to the user-specified iteration count do

l← (lmin + lmax)/2

if 4l

M p̄(xi, l) <
K
N then

lmin ← l

else

lmax ← l

end if

end for

li ← (lmin + lmax)/2

and then the closest center is computed for each VPL.

In our implementation, all the texels are assigned to

clusters for high-frequency geometries and textured

glossy materials unlike Dong et al. [11]. To accelerate

the search of the closest cluster center for each texel,

a kd-tree of cluster centers is built using parallel

construction of a binary radix tree [17]. For densely

distributed cluster centers, this tree-based search is

more efficient than using a 2D uniform grid proposed

by Prutkin et al. [23]. Once clusters are assigned to

all the texels, those texels are sorted by cluster ID.

Then, to compute the total value of clustered texels, a

thread is dispatched for each cluster similar to Prutkin

et al. [23]. Unlike Prutkin et al., we use a GPU radix

sort [22] instead of bitonic sort for the high-resolution

reflective shadow map and G-buffer. Although k-means

clustering can be improved by updating cluster centers

in an iterative fashion, we do not update iteratively in

this paper.
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